skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pol, Diego"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Here we present the first record of a stem-Coracii outside the Holarctic region, found in the early Eocene of Patagonia at the Laguna del Hunco locality. Ueekenkcoracias tambussiae gen. et sp. nov. consists of an incomplete right hind limb that presents the following combination of characters, characteristic of Coracii: relatively short and stout tibiotarsus, poorly developed crista cnemialis cranialis, short and wide tarsometatarsus, with the tuberositas m. tibialis cranialis located medially on the shaft, and curved and stout ungual phalanges. Although the presence of a rounded and conspicuous foramen vasculare distale and the trochlea metatarsi II strongly deflected medially resemble Primobucconidae, a fossil group only found in the Eocene of Europe and North America, our phylogenetic analysis indicates the new taxon is the basalmost known Coracii. The unexpected presence of a stem-Coracii in the Eocene of South America indicates that this clade had a more widespread distribution than previously hypothesized, already extending into the Southern Hemisphere by the early Eocene. Ueekenkcoracias tambussiae represents new evidence of the increasing diversity of stem lineages of birds in the Eocene. The new material provides novel morphological data for understanding the evolutionary origin and radiation of rollers and important data for estimates of the divergence time of the group. 
    more » « less
  2. Background Macelognathus vagans Marsh, 1884 from the Late Jurassic Morrison Fm. of Wyoming was originally described as a dinosaur by Marsh and in 1971 Ostrom suggested crocodilian affinities. In 2005, Göhlich and collaborators identified new material of this species from Colorado as a basal crocodylomorph. However, a partial skull found in association with mandibular and postcranial remains was not described. Methods Due to the small size and delicate structures within the braincase, micro CT studies were performed on this specimen. The new anatomical information was incorporated in a phylogenetic dataset, expanding both character and taxon sampling. Results This new material reinforces the non-crocodyliform crocodylomorph affinities of Macelognathus as it bears a large otic aperture, unfused frontals and lacks ornamentation on the dorsal cranial bones. The internal structures also support these affinities as this specimen bears traits (i.e., heavily pneumatized and expanded basisphenoid; the presence of additional pneumatic features on the braincase; and the otoccipital-quadrate contact) not present in most basal crocodylomorphs. Furthermore, the presence of a wide supraoccipital and a cranioquadrate passage are traits shared with Almadasuchus from the early Late Jurassic of Argentina. Macelognathus was recovered as one of the closest relatives of crocodyliforms, forming a clade (Hallopodidae) with two other Late Jurassic taxa ( Almadasuchus and Hallopus ). Discussion The clade formed by Almadasuchus + Hallopus + Macelognathus , the Hallopodidae, is characterized by a higher degree of suturing of the braincase, posteriorly closed otic aperture (paralleled in mesoeucrocodylians) and cursorial adaptations. Also, the phylogenetic position of this lineage of derived crocodylomorphs as the sister group of Crocodyliformes implies a large amount of unsampled record (ghost lineage), at least 50 million years. 
    more » « less
  3. Abstract Notosuchia is a clade of crocodyliforms that was highly successful and diverse in the Cretaceous of Gondwana.Araripesuchus gomesiiis a small notosuchian from the Early Cretaceous of Brazil that belongs to Uruguaysuchidae, one of the subgroups of notosuchians that first radiated, during the Aptian–Albian. Here we present a finite element analysis ofA. gomesiibased on a model reconstructed from CT scans and performed using published bone properties for crocodiles. The adductor musculature and their respective attachment areas were reconstructed based on Extant Phylogenetic Bracket. Different functional scenarios were tested applying an estimated 158 N bite force: unilateral bite, bilateral bite, pullback, head‐shake, and head‐twist. The results obtained were compared with those ofAlligator mississippiensis, one of its closest living relatives. In the different simulations, the skull and lower jaws ofAraripesuchussuffers more stress in the head‐shake movement, followed by the unilateral and pullback bites with stress focalized in the premaxillary region. In contrast, the head‐twist is the one with smaller stress values.Araripesuchuspossess an oreinirostral skull that may provide greater overall resistance in the different scenarios on average, unlikeAlligatorthat has a platyrostral skull with less resistance to dorsoventral mechanical loads. Previous hypotheses that consideredA. gomesiias omnivorous coupled with our results, its small size, and likely limited bite force, suggest this taxon probably fed on small prey and other trophic items that could catch and handle entirely with its mouth, such as insects and small vertebrates. 
    more » « less
  4. Abstract Jaw muscles are key features of the vertebrate feeding apparatus. The jaw musculature is housed in the skull whose morphology reflects a compromise between multiple functions, including feeding, housing sensory structures, and defense, and the skull constrains jaw muscle geometry. Thus, jaw muscle anatomy may be suboptimally oriented for the production of bite force. Crocodylians are a group of vertebrates that generate the highest bite forces ever measured with a flat skull suited to their aquatic ambush predatory style. However, basal members of the crocodylian line (e.g.,Prestosuchus) were terrestrial predators with plesiomorphically tall skulls, and thus the origin of modern crocodylians involved a substantial reorganization of the feeding apparatus and its jaw muscles. Here, we reconstruct jaw muscles across a phylogenetic range of crocodylians and fossil suchians to investigate the impact of skull flattening on muscle anatomy. We used imaging data to create 3D models of extant and fossil suchians that demonstrate the evolution of the crocodylian skull, using osteological correlates to reconstruct muscle attachment sites. We found that jaw muscle anatomy in early fossil suchians reflected the ancestral archosaur condition but experienced progressive shifts in the lineage leading to Metasuchia. In early fossil suchians, musculus adductor mandibulae posterior and musculus pterygoideus (mPT) were of comparable size, but by Metasuchia, the jaw musculature is dominated by mPT. As predicted, we found that taxa with flatter skulls have less efficient muscle orientations for the production of high bite force. This study highlights the diversity and evolution of jaw muscles in one of the great transformations in vertebrate evolution. 
    more » « less
  5. Abstract Almadasuchus figariiis a basal crocodylomorph recovered from the Upper Jurassic levels of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. This taxon is represented by cranial remains, which consist of partial snout and palatal remains; an excellently preserved posterior region of the skull; and isolated postcranial remains. The skull of the only specimen of the monotypicAlmadasuchuswas restudied using high‐resolution computed micro tomography.Almadasuchushas an apomorphic condition in its skull shared with the closest relatives of crocodyliforms (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal carotids) on the occipital surface of the skull. The endocast is tubular, as previously reported in thalattosuchians, but has a marked posterior step, and a strongly projected floccular recess as in other basal crocodylomorphs. Internally, the skull ofAlmadasuchusis heavily pneumatized, where different air cavities invade the bones of the suspensorium and braincase, both on its dorsal or ventral parts.Almadasuchushas a large basioccipital recess, which is formed by cavities that excavate the basioccipital and the posterior surface of the basisphenoid, and unlike other crocodylomorphs is connected with the basisphenoid pneumatizations. Ventral to the otic capsule, a pneumatic cavity surrounded by the otoccipital and basisphenoid is identified as the rhomboidal recess. The quadrate ofAlmadasuchusis highly pneumatized, being completely hollow, and the dorsal pneumatizations of the braincase are formed by the mastoid and facial antra, and a laterosphenoid cavity (trigeminal diverticulum). To better understand the origins of pneumatic features in living crocodylomorphs we studied cranial pneumaticity in the basal members of Crocodylomorpha and found that: (a) prootic pneumaticity may be a synapomorphy for the whole clade; (b) basisphenoid pneumaticity (pre‐, postcarotid and rostral recesses) is a derived feature among basal crocodylomorphs; (c) quadrate pneumatization is acquired later in the history of the group; and (d) the rhomboidal sinus is a shared derived trait of hallopodids and crocodyliforms. The marine thallatosuchians exhibit a reduction of the pneumaticity of the braincase and this reduction is evaluated considering the two phylogenetic positions proposed for the clade. 
    more » « less
  6. Abstract Complex structures, like the vertebrate skull, are composed of numerous elements or traits that must develop and evolve in a coordinated manner to achieve multiple functions. The strength of association among phenotypic traits (i.e., integration), and their organization into highly-correlated, semi-independent subunits termed modules, is a result of the pleiotropic and genetic correlations that generate traits. As such, patterns of integration and modularity are thought to be key factors constraining or facilitating the evolution of phenotypic disparity by influencing the patterns of variation upon which selection can act. It is often hypothesized that selection can reshape patterns of integration, parceling single structures into multiple modules or merging ancestrally semi-independent traits into a strongly correlated unit. However, evolutionary shifts in patterns of trait integration are seldom assessed in a unified quantitative framework. Here, we quantify patterns of evolutionary integration among regions of the archosaur skull to investigate whether patterns of cranial integration are conserved or variable across this diverse group. Using high-dimensional geometric morphometric data from 3D surface scans and computed tomography scans of modern birds (n = 352), fossil non-avian dinosaurs (n = 27), and modern and fossil mesoeucrocodylians (n = 38), we demonstrate that some aspects of cranial integration are conserved across these taxonomic groups, despite their major differences in cranial form, function, and development. All three groups are highly modular and consistently exhibit high integration within the occipital region. However, there are also substantial divergences in correlation patterns. Birds uniquely exhibit high correlation between the pterygoid and quadrate, components of the cranial kinesis apparatus, whereas the non-avian dinosaur quadrate is more closely associated with the jugal and quadratojugal. Mesoeucrocodylians exhibit a slightly more integrated facial skeleton overall than the other grades. Overall, patterns of trait integration are shown to be stable among archosaurs, which is surprising given the cranial diversity exhibited by the clade. At the same time, evolutionary innovations such as cranial kinesis that reorganize the structure and function of complex traits can result in modifications of trait correlations and modularity. 
    more » « less